A Model for a Spreading and Melting Droplet on a Heated Substrate
نویسندگان
چکیده
We develop a model to describe the dynamics of a spreading and melting droplet on a heated substrate. The model, developed in the capillary-dominated limit, is geometrical in nature and couples the contact line, trijunction, and phase-change dynamics. The competition between spreading and melting is characterized by a single parameter KT that represents the ratio of the characteristic contact line velocity to the characteristic melting (or phase-change) velocity. A key component of the model is an equation of motion for the solid. This equation of motion, which accounts for global effects through a balance of forces over the entire solid–liquid interface, including capillary effects at the trijunction, acts in a natural way as the trijunction condition. This is in contrast to models of trijunction dynamics during solidification, where it is common to specify a trijunction condition based on local physics alone. The trijunction dynamics, as well as the contact angle, contact line position, and other dynamic quantities for the spreading and melting droplet, are predicted by the model and are compared to an isothermally spreading liquid droplet whose dynamics are controlled exclusively by the contact line. We find that in general the differences between the dynamics of a spreading and melting droplet and that of an isothermally spreading droplet increase as KT increases. We observe that the presence of the solid phase in the spreading and melting configuration tends to inhibit spreading relative to an isothermally spreading droplet of the same initial geometry. Finally, we find that increasing the effect of spreading promotes melting.
منابع مشابه
Spreading of thin volatile liquid droplets on uniformly heated surfaces
We develop a mathematical model for the spreading of a thin volatile liquid droplet on a uniformly heated surface. The model accounts for the effects of surface tension, evaporation, thermocapillarity, gravity and disjoining pressure for both perfectly wetting and partially wetting liquids. Previous studies of non-isothermal spreading did not include the effects of disjoining pressure and there...
متن کاملModeling Of Heat Transfer And Solidification Of Droplet/Substrate In Microcasting SDM Process
Microcasting Shape-Deposition-Manufacturing is an approach to Solid-Freeform-Fabrication (SFF) process which is a novel method for rapid automated manufacturing of near-net-shape multi-material parts with complex geometries. By this method, objects are made by sequentially depositing molten metal droplets on a substrate and shaping by a CNC tool, layer by layer. Important issues are concerned w...
متن کاملThermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature.
We study the thermocapillary-driven spreading of a droplet on a nonuniformly heated substrate for fluids associated with a non-monotonic dependence of the surface tension on temperature. We use lubrication theory to derive an evolution equation for the interface that accounts for capillarity and thermocapillarity. The contact line singularity is relieved by using a slip model and a Cox-Voinov r...
متن کاملSolidification of Impinging Molten Metal Droplet on a Cold Substrate
The phenomenon of impingement and solidification of a molten metal droplet on a substrate occurs in processes like thermal spray coating and spray casting. Molten metal droplet after impingement over a substrate becomes a splat after spreading and solidification. The phenomenon of spreading and solidification of a droplet can be understood by mathematical modeling. In the present work, the spre...
متن کاملInverted Leidenfrost-like Effect during Condensation.
Water droplets condensing on solidified phase change materials such as benzene and cyclohexane near their melting point show in-plane jumping and continuous "crawling" motion. The jumping drop motion has been tentatively explained as an outcome of melting and refreezing of the materials surface beneath the droplets and can be thus considered as an inverted Leidenfrost-like effect (in the classi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 61 شماره
صفحات -
تاریخ انتشار 2001